Aggregating Crowd Wisdoms with Label-aware Autoencoders

نویسندگان

  • Li'ang Yin
  • Jianhua Han
  • Weinan Zhang
  • Yong Yu
چکیده

Aggregating crowd wisdoms takes multiple labels from various sources and infers true labels for objects. Recent research work makes progress by learning source credibility from data and roughly form three kinds of modeling frameworks: weighted majority voting, trust propagation, and generative models. In this paper, we propose a novel framework named Label-Aware Autoencoders (LAA) to aggregate crowd wisdoms. LAA integrates a classifier and a reconstructor into a unified model to infer labels in an unsupervised manner. Analogizing classical autoencoders, we can regard the classifier as an encoder, the reconstructor as a decoder, and inferred labels as latent features. To the best of our knowledge, it is the first trial to combine label aggregation with autoencoders. We adopt networks to implement the classifier and the reconstructor which have the potential to automatically learn underlying patterns of source credibility. To further improve inference accuracy, we introduce object ambiguity and latent aspects into LAA. Experiments on three real-world datasets show that proposed models achieve impressive inference accuracy improvement over state-of-the-art models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stacked Similarity-Aware Autoencoders

As one of the most popular unsupervised learning approaches, the autoencoder aims at transforming the inputs to the outputs with the least discrepancy. The conventional autoencoder and most of its variants only consider the one-to-one reconstruction, which ignores the intrinsic structure of the data and may lead to overfitting. In order to preserve the latent geometric information in the data, ...

متن کامل

Crowd IQ: aggregating opinions to boost performance

We show how the quality of decisions based on the aggregated opinions of the crowd can be conveniently studied using a sample of individual responses to a standard IQ questionnaire. We aggregated the responses to the IQ questionnaire using simple majority voting and a machine learning approach based on a probabilistic graphical model. The score for the aggregated questionnaire, Crowd IQ, serves...

متن کامل

LabelBoost: An Ensemble Model for Ground Truth Inference Using Boosted Trees

We introduce LabelBoost, an ensemble model that utilizes various label aggregation algorithms to build a higher precision algorithm. We compare this algorithm with majority vote, GLAD and an Expectation Maximization model on a publicly available dataset. The results suggest that by building an ensemble model, one can achieve higher precision value for aggregating crowd-sourced labels for an ite...

متن کامل

CrowdIQ: A New Opinion Aggregation Model

In this study, we investigate the problem of aggregating crowd opinions for decision making. The Wisdom of Crowds (WoC) theory explains how crowd opinions should be aggregated in order to improve the performance of decision making. Crowd independence and a weighting mechanism are two important factors to crowd wisdom. However, most existing crowd opinion aggregation methods fail to build a diff...

متن کامل

Crowd counting in public video surveillance by label distribution learning

The increase of population causes the raise of security threat in crowed environment, which makes crowd counting becoming more and more important. For common complexity scenes, existing crowd counting approaches are mainly based on regression models which learn a mapping between low-level features and class labels. One of the major challenges for generating a good regression function is the ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017